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SUMMARY 
A control volume finite element method that uses a triangular grid has been applied for solving confined 
turbulent swirling flows. To treat the velocity-pressure coupling, the vorticity-streamfunction formulation 
has been used. For turbulence effects the k--E model has been adopted. Consistent with the use of wall 
functions in the near-wall regions, a boundary condition for the calculation of the vorticity at computational 
boundaries is proposed and used effectively. The discretized equations are obtained by making use of an 
exponential interpolation function. Its use has been beneficial in reducing numerical diffusion. Comparisons 
of the current predictions with available experimental and numerical data from the literature showed 
generally fair agreement. 
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1 .  INTRODUCTION 

As an intermediate step towards the simulation of reacting flows in combustors and furnaces, 
we are interested in the computation of turbulent highly swirling flows. For realistic industrial 
applications and in view of the existing literature,' positive contributions can be made by 
addressing the following points: geometric complexity, reducing the amount of false diffusion 
that plagues standard finite differences codes, and adequate modelling of the physics of the flow. 
Benim' showed that the first two points can be dealt with efficiently using the finite element 
method coupled with a streamline upwind procedure (SUPG).'a3 This leads to a significant 
improvement over existing numerical procedures, allowing geometrical details of swirl burners 
to be easily captured and reducing the amount of false diffusion. As far as the third point is 
concerned, it has been shown' that for an adequate physical modelling of turbulence effects in 
highly swirling flows the algebraic stress model (ASM) is to be preferred over the standard k--E 
model. 

In this work alternative ways of treating geometric complexity and false diffusion problems 
are investigated. The control volume finite element method (CVFEM)4 is applied for the 
computation of turbulent swirling flows. This approach uses unstructured triangular grids, 
resulting in a mesh flexibility comparable with that of finite element methods for the handling 
of geometric complexity. The methodology incorporates an exponential interpolation function, 
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also introduced by Baliga and Patankar.4 Its main characteristic is that it varies exponentially 
in the direction of the average velocity vector in each element and linearly in the normal direction. 
By definition it correctly simulates the one-sided nature of convection, and since it is developed 
along the direction of the local flow vector, it reduces the problem of false diffusion encountered 
when other methods are 

The CVFEM method has already shown promise for simulating non-swirling flows using the 
primitive variables formulation4*' or the vorticity-streamfunction f o r m ~ l a t i o n . ~ * ~  However, no 
studies have yet been reported for turbulent swirling flows. The scope of the present work is 
therefore to investigate the use of the CVFEM method together with the exponential interpola- 
tion function formulation for the numerical simulation of such flows. For this we chose the 
vorticity-streamfunction formulation, and because an ASM model has not yet been integrated 
into this formulation, the standard k--E turbulence model" is used. The vorticity-streamfunction 
formulation was chosen because it is easier to implement algorithmically and is more cost- 
effective from a computational standpoint, but these are not the only reasons. We are mainly 
interested in ZD/axisymmetric computations so that the extension to 3 D  is not necessary for 
now. If this is required, it is obvious that the vorticity-streamfunction formulation becomes 
much less attractive than a velocity-pressure formulation. Near solid boundaries the wall 
function approach" is adopted and particular attention is paid to the numerical implementation 
of the boundary conditions near solid walls. 

As a preliminary test the benchmark turbulent pipe flow test" is solved. Then the solution 
of turbulent swirling flow in a diffuser is compared with other numerical and experimental 
solutions from the literature.' 

2. GOVERNING EQUATIONS 

The phenomenon under consideration is represented by a steady axisymmetric turbulent swirling 
flow. The axisymmetric Reynolds-averaged equations representing the conservation of mass and 
momentum are written via the vorticity-streamfunction formulation (w, I)). The vorticity is 
expressed by 

(1) 

The streamfunction $ is expressed in such a way that the continuity equation is identically 

w = aolax - a u p r ,  

where u and o are the velocity components in the x- and r-direction respectively. 

satisfied. We then have 

rpu = a+/&, rpv = -ag/ax,  (2) 

where r is the radius for axisymmetrical configurations. 
Using equations (1) and (2), the governing equations for the fluid flow problem become'2 

P w  a ( E) :r( :) r ax 

a a a 
ax ar ax ~- ( r p u o )  + - (rpow) = - rp ,  - + - r p ,  - + rpuw - L- + - (poi), (4) 
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where p is the density and uo is the tangential velocity component. pe is the effective viscosity 
and is given by 

P e  = P + PI9 (6)  

p being the laminar viscosity and pt the turbulent viscosity, evaluated according to the k-s model 
of turbulence" as 

2 d 
-- (rpuk) + ~ (rpuk) = 
d X  dr 

i? a 
- (rpus) + - (rpus) = 
SX ar 

(7) 

G, and C,(&/k)Gk are generation terms, as opposed to the destruction terms -p& and -c2p(&/k)E. 
G, is given by 

The turbulent viscosity is related to k and E via 

Pt = C,P(k2)/E. (10) 

This turbulence model has five constants: Ok, o,, cl, c2 and cd. The following values are 
commonly used:" 

Ok OE c1 c2 cd 

1.0 1.30 144 1.92 0.09 

3. BOUNDARY CONDITIONS 

In this section the boundary conditions required to solve the system of differential equations 
are presented. Particular attention is paid to the near-wall treatment. Generally there are four 
types of boundaries: inlet, outlet, symmetry axis and solid walls. For each type and for each 
unknown let us see what boundary conditions are to be specified. 

fnler. The velocity is known, so that the stream function and vorticity distributions are 
calculated from their own definitions (equations (1) and (2)). Values of k or E are not known at 
the inlet, and if they are not given by experimental data, some reasonable assumptions can be 
made. The kinetic energy of turbulence is estimated according to a certain percentage of the 
square of the average inlet velocity: 

k = l U 2 ,  (1 1) 

where ii is the average inlet velocity and l is a percentage. 
The dissipation is calculated according to the equation 

E = ~ , ( k ~ ' ~ ) / u D ,  (12) 

where D is the inlet diameter. The values L = 0.02 and a = 0.005 are commonly used and may 
vary slightly in the literature depending on the author. 
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Outlet. We suppose that the flow extends over a sufficiently long domain so that it is fully 
developed at  the exit solution. Thus for any variable 4 the condition is 

Symmetry axis. The streamfunction is assigned an arbitrary value because the symmetry axis 
is also a streamline, while the vorticity w is equal to zero by definition and from the fact that 
auldr = 0 and u = 0 on the axis. For the other variables the radial derivative vanishes, so that 

Solid walls. When the boundary conditions are specified right at  the physical wall, all the 
equations must be integrated through the viscous sublayer up to the wall. This, however, is 
undesirable for two reasons. First, an excessive number of grid points are needed in the near-wall 
region in order to adequately describe the steep gradients prevailing there. Secondly, viscous 
effects are important in the near-wall region, so that the high-Reynolds-number turbulence model 
used in this work is not applicable. One alternative is to apply the so-called wall function 
method" which makes use of the availability of empirical laws that connect the wall conditions 
(i.e. wall shear stress) to the dependent variables just outside the viscous sublayer. In doing so, 
the computational procedure skips over the viscous sublayer. Therefore wall conditions are not 
imposed at the wall but rather at a certain distance from the wall. The actual computational 
domain is then smaller than the physical one. The numerical implementation of the wall function 
method follows the approach proposed by Benim and Zinser.' A description of this approach 
and its extension to the vorticity-streamfunction formulation follows. 

We first suppose that the shear stress at  the wall, T ~ ,  is constant up to an a priuri set distance 
6 ,  from the wall. By further supposing that in the turbulent sublayer local equilibrium prevails 
so that the rate of k-production is equal to its destruction rate, the following near-wall values 
of k and E are obtained: 

Of course, the quality of the boundary conditions will depend on how the wall shear stress 
is evaluated. Following the approach proposed by Benim and Zinser," the wall shear stress is 
evaluated by using the velocity profile within the calculation domain. Consider for this the 
near-wall nodes 1 and 2 of Figure 1. Node 1 is the boundary node where the conditions are to 
be applied, while node 2 is in the outer flow region where the governing equations are solved. 
The two nodes lie in the triangle containing the normal to the wall that passes through boundary 
point 1. The assumption is then that the velocity at point 2 lies on the same variation curve as 
point 1. In this way conditions at point 2 can be used to calculate the wall shear stress. For 
this the velocity variation of Reichardt" close to the wall is used, which is defined as 

Up = U* { 2.5 log ( 1 +- "":"*) + 7.f 1 - e x p ( F )  - erp( -0'3~yu*)]}, (17) 



CONFINED TURBULENT SWIRLING FLOWS 139 

Figure 1. The near-wall region and nomenclature 

where U p  is the velocity parallel to the wall and Y is the local distance from the wall to point 
P. For a cylindrical co-ordinate system in the presence of swirl the distance Y is the radial 
distance from the wall to point P, while the velocity U p  is the magnitude of the total velocity 
vector, which includes the contribution of the tangential velocity component uo. The symbol u* 
denotes the so-called friction velocity and can be written in terms of the wall shear stress as 

U* = (T,/p)0'5. (18) 

Note that the velocity in each triangle is constant because the streamfunction is linear in each 
element. However, only for the purpose of calculating boundary conditions, a weighted area 
nodal velocity can be computed according to 

nb 

i =  1 i =  1 

where the sum is over all elements neighbouring point P. 
Let us now address the calculation of the near-wall vorticity and streamfunction values. First 

we suppose that the velocity at the computational boundary is parallel to the wall so that the 
boundary is also a streamline. Then the value of the streamfunction on that boundary can be 
found by integrating the velocity profile at  a section where it is known (inlet). For the vorticity 
the following approach is adopted. In terms of the local reference frame (X, Y) of Figure 1 the 
vorticity is expressed as 

14 = IaU/aYI, (20) 

where U is the local velocity component in the X-direction and because the Y-velocity component 
( V )  is zero along X. Furthermore, if we assume a constant shear stress in the near-wall region, 
then by equation (18) the friction velocity is also constant in the near-wall region. One can 
therefore calculate the near-wall value of the vorticity by taking the derivative of equation (17) 
with respect to Y 

We can now summarize the computational procedure for the near-wall values. 

1. Fix the distance 6, of the physical wall to the computational boundary. 
2. Evaluate the velocity at  point 2 from the solution of the governing equations. 
3. Solve the non-linear equation (equation (17)) for u*, U p  being equal to U2 and the distance 

Y equal to 6,. 
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4. Use u* and equation (17) this time to calculate the velocity U ,  at point 1 with Yequal to 6, .  
5. Evaluate the vorticity from the derivative of the velocity calculated at point 1 (equations 

(17) and (20)). 
6. Use the values of the vorticity and the velocity as Dirichlet boundary conditions for the 

next iteration step. 
7. Use the value of U ,  found at  step 4 to compute the tangential velocity component Ug and 

use it as a boundary condition for the next iteration step. Vg is the component of U ,  in the 
&direction. 

4. THE NUMERICAL SOLUTION 

In order to solve the set of partial differential equations previously described, the control-volume- 
based finite element technique presented by Baliga and Patankar4 has been followed. Each 
equation in the system can be cast in the generic form 

where 4 represents the scalar which undergoes convection and is diffused through the field, 
r is the exchange coefficient and S ,  is a source or sink term. A description of the discretization 
method by reference to this general transport equation follows. More details may be found in 
References 4, 7 and 14. 

4.1.  Domain discretization and interpolation function 

The domain of interest is first divided into three-node triangular elements. Around the 
computational point P a control volume is created by joining the centroids of all neighbouring 
elements through the midpoints of the corresponding sides (Figure 2). 

Following the finite volume framework, equation (21) is integrated over the control volume. 

conrrol volume u 
Figure 2. The polygonal control volume 
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i 
Figure 3. Triangular element with the global (x, y )  system and the local (X, Y) flow-oriented co-ordinate system and 

related nomenclature 

This procedure requires an interpolation function for 4. Baliga and Patankar4 developed an 
approach based on the idea of using the exact solution of the one-dimensional convection- 
diffusion equation as the interpolation function, namely the exponential scheme proposed 
earlier by Patankar.” As an extension an interpolation function that is as close as possible 
to the exact solution of the two-dimensional convection4iffusion equation was introduced. With 
the origin located at the centroid of the element, a locally flow-oriented co-ordinate system is 
defined ((X, I), Figure 3). For each triangular element the interpolation function for C#I is given by 

(22) 4 = AZ + BY + c, 
with 

where X and Yare the local co-ordinates and X,,, = max(X,, X,, X3). U,, is the average 
local velocity expressed as 

(24) 2 112 
u a v  = cub + vav) > 

where 

111 + 112 + u3 
3 

u1 + vz + 03 
9 3 .  0,” = uav = 

r and p are average values of the exchange coefficient and the density respectively that 
prevail over the element. 

The values of A, B and C are uniquely determined by the values of C#I pertaining to the three 
nodes 1-2-3. For cylindrical co-ordinates there is no difference in the expression of the 
interpolation function (equation (22)). 

The good characteristics of this shape function have been further demonstrated by Prakash 
and PatankarI6 and Hookey and Baliga’.’’ for fluid flow or heat transfer problems using the 
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primitives variable formulation or the vorticity-streamfunction form~lation.~*'* It must be 
pointed out that because there are no convection terms in the differential equation for 
the streamfunction II/, the interpolation function for this variable is bilinear and given by 
I// = ax + br + c. The resulting numerical scheme is then applied to solve turbulent incompress- 
ible swirling flows. 

4.2. Discretized equations 

The discretization of the equations is carried out by integrating equation (21) over the 
defined control volume. Using Simpson's rule through points a-r-o or 0-t-c (Figure 3) and 
applying the divergence theorem, an equation of the form 

(25) 

is obtained for each computational point, with a,,, and anb and d p  called the discretization 
coefficients;' the subscript nb refers to neighbouring points and p stands for the computational 
point P. 

a p 4 p  + 1 a n b 4 n b  = d p  

4.3. Boundary nodes and source terms 

Boundary nodes. For nodes at Dirichlet boundaries a,  = 1 and anb = 0; thus d, becomes the 
known value of 4. For Neumann boundaries an equation of the type (25)  is written. 

Source terms. Source terms are integrated over the control volume (CV) by considering an 
average value calculated at the centroid and which prevails over the element, i.e. 

where 6 is the volume (an area in 2D) of the element and the sum is taken over all 
neighbours of the computational point. 

Whenever possible, source terms are linearized so that the coefficient a, may also include a 
part due to the linearization and discretization of the source term. However, for k and E 

source terms special care was taken to avoid overshoots in the solution (negative values of k 
or E) .  The procedure consisted of first linearizing the negative part of the source term and 
then including it in the discretization coefficient up on the left-hand side of equation (25). For 
a reason that will become apparent later, even if the remaining positive part of the source 
term can also be linearized and moved over to the left-hand side, it is left on the right-hand 
side. The linearization of the negative part is performed in the following way. 

Let S; denote the negative part of the source term, r#~ being k or E. S; may be written as 

wheref(cp) is a function of cp. The linearization is then taken to be 

where n stands for the value at the previous iteration. 
This practice, of taking the negative part only of the source term and including it on the 

left-hand side of equation (25), makes the resulting matrix more diagonally dominant and the 
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iterative procedure converges. Also, the apparent behaviour of 4 from one iteration to 
another (according to the remaining part of the source term) is that of a growing function. 
During the first iteration steps the values of k and E still remain negative and after that they 
become admissible. 

4.4. Solution of the discretized equations 

For each computational point an equation of the (25) type is written. These equations are 
then assembled to solve for each variable the entire field implicitly. However, owing to the 
coupling between the vorticity and streamfunction variables, a coupled approach is preferred, 
thus treating $ and w as unknowns in the same algebraic linear system. The solution for the 
rest of the variables (ug,  k, E )  is achieved in a sequential (segregated) manner. Whether a coupled 
or a segregated approach is used, the resulting matrix is sparse and without any particular 
structure and there are a number of suitable methods for solving the discretized equations. We 
used a sparse matrix solver from IBM’s ESSL library.” The overall solution procedure can 
be outlined as follows. 

(a) Guess all the necessary variables. 
(b) Solve the vorticity and streamfunction transport equations. 
(c) Solve the swirl velocity component. 
(d) Solve the transport equations for k-E. 
(e) Calculate the near-wall values of k, E and the velocity. 
(0 Update the turbulent viscosity in the entire field. 
(g) Treat the updated values of all variables as improved guesses and return to step 2 and 

repeat the process until convergence 

5. NUMERICAL RESULTS 

The procedure and method described above were applied to solve the following test cases: 

(a) turbulent channel flow 
(b) confined turbulent swirling flow. 

The test cases are accompanied by experimental or numerical data from the literature which 
will be used to assess the validity and accuracy of the method. 

5.1. Turbulent flow in a channel 

In this problem the fluid enters a circular channel with a uniform velocity profile and a 
Reynolds number (based on the diameter and the average inlet velocity) equal to 3.0 x lo5 
(Figure 4). The results are compared with the experimental data of Richman and AzadZ0 and 
with Nikuradse’s quasi-analytical velocity pr0fi1e.I~ A non-uniform mesh containing 550 nodes 
(Figure 5 )  is used for the computations. Figure 6 shows the variation in the axial velocity (divided 
by the bulk velocity) at various heights in the channel. The correlation with the experimental 
data can be seen to be acceptable. In general our predictions tend to underestimate the 
developing length, while the velocity close to the wall is overestimated. This shows the sensitivity 
of the solution to adequate inlet conditions and a proper choice of the a priori set distance from 
the physical wall to the computational boundary (al). For this simulation (experimental or 
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Figure 5. Mesh for the channel flow 
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Figure 6. Axial variation in the velocity at various heights 
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Figure 7. Axial variation in the wall shear stress 
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Figure 8. Radial variation in the exit velocity 

numerical) it is common for authors to report an overshoot in the velocity at the centreline at 
around 25 diameters,",21 but that was not the case here. In Figure 7 the variation in the wall 
shear stress (over the fully developed value ( T , ) ~ ~ )  is plotted. According to the experimental data, 
the wall shear stress reaches its fully developed value after approximately 20 diameters. The 
same observation can be made from our numerical predictions. Finally, the good agreement of 
the predicted fully developed velocity profile with the quasi-analytical solution is depicted in 
Figure 8. 

5.2. Confined turbulent swirling flow 

This test case (Figure 9) has been studied experimentally and numerically.' At the inlet a 
uniform velocity profile (u = 4.7 m s-') and a swirl number equal to 0.7 are prescribed. For k 
and E a 1.5% turbulence intensity is used to compute the inlet values. The mesh contains 905 
nodes distributed as shown in Figures 10 and 11. The effect on the velocity field of varying the 
swirl number from 0.0 to 0.7 is shown in Figures 12 and 13. Quite clearly, all the recirculation 
zone has changed, shifting from the corner after the diffusing part downwards. This result is 
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Figure 9. Global features of the confined turbulent swirling flow 

Figure 10. The computational mesh for the diffuser: 905 nodes 
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Figure 11. Detail of the computational mesh (scaled drawing) 
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Figure 13. Velocity field in the diffusing part, S = 0.0 
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Figure 14. Radial distribution of the axial velocity component, S = 0.7 

corroborated by the FEM predictions of Benim' using the standard k--E model. However, in 
addition to the central recirculation zone (S = 0.7), he also predicted a small vortex in the corner 
right after the diffusing part. We were not able to reproduce this result even with a finer grid 
in this region. The distribution of the x-velocity component at several stations downstream is 
plotted in Figure 14 and compared with experimental and numerical data.' Our predictions 
agree best with the finite element numerical predictions of Benim.' The use of the exponential 
shape function did give the same benefits as the use of the SUPG procedure of the finite element 
computations. The solution is indeed less diffusive when compared with the finite differences 
predictions. Nevertheless, the correlation with the experimental data is poor. In fact, Benim has 
clearly shown' that the use of the k--E turbulence model is deficient for highly swirling flows 
and that an algebraic stress model makes it possible to obtain much better predictions. The 
same conclusions may be drawn from an examination of Figure 15, which shows the radial 
distribution of the tangential velocity component. 
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5.3. Mesh refinements and CPU time 

In order to test the effects of mesh refinement on the solution of the step diffuser swirling 
test case, computations were performed using a coarser grid containing 409 nodes as well as a 
finer grid with 2030 nodes. The effect of mesh refinement on the axial and tangential velocities 
is shown in Figures 16 and 17. No significant improvement is gained because of mesh refinement. 

A typical running CPU time for a swirling case such as the step diffuser presented above 
(around 900 nodes) is 150 s on an IBM 3090 180 VF. Convergence is tested by computing the 
maximum relative error of all the variables between two successive iterations. To reach a 
convergence criterion of 1 x 200 iterations are needed for the step diffuser containing 
around 90 nodes. Relaxation factors of 0.2 for k, E and u8 had to be used during the iterative 
procedure. 
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Figure 16. Efiect of mesh refinement on the axial velocity component 
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6. CONCLUSIONS 

The control volume finite element method with the vorticity-streamfunction formulation has 
been used to solve turbulent swirling flows. An exponential interpolation function helped reduce 
the false diffusion effects on the solution. There was a resemblance between the results of the 
simulation and the results of an SUPG finite element procedure. The near-wall region was 
treated via the wall function method with a particular application to our formulation. To improve 
the quality of the predicted results, a better physical modelling of the turbulence is necessary. 
The computational behaviour of the proposed procedure was observed to be stable and accurate 
within the limits of the physical models. 
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